
Real-Time Nanoparticle−Cell Interactions in Physiological Media by
Atomic Force Microscopy
Georgios Pyrgiotakis, Christoph O. Blattmann, and Philip Demokritou*

Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health, Harvard University, 665 Huntington Avenue,
02115 Boston, Massachusetts United States

*S Supporting Information

ABSTRACT: Particle−cell interactions in physiological media
are important in determining the fate and transport of
nanoparticles and biological responses to them. In this work,
these interactions are assessed in real time using a novel atomic
force microscopy (AFM) based platform. Industry-relevant
CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two
primary particle sizes were synthesized by the flame spray
pyrolysis (FSP) based Harvard Versatile Engineering Nano-
materials Generation System (Harvard VENGES) and used in
this study. The ENPs were attached on AFM tips, and the
atomic force between the tip and lung epithelia cells (A549),
adhered on a substrate, was measured in biological media, with
and without the presence of serum proteins. Two metrics were
used to assess the nanoparticle cell: the detachment force
required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate
that these atomic level ENP−cell interaction forces strongly depend on the physiological media. The presence of serum proteins
reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein
corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material
dependent.

KEYWORDS: Nanoparticles, Nanotoxicology, Protein corona, Atomic force microscopy, Cerium oxide, Iron oxide, Nano-EHS,
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■ INTRODUCTION

The use of engineered nanoparticles (ENPs) in many
commercial products and their involvement in many industrial
processes makes environmental,1 occupational,2,3 and consum-
er exposure inevitable.4,5 Nano enabled technologies are
currently in use for various biomedical applications ranging
from preventing the transmission of infectious diseases6,7 to
theranostic applications.8 Nanoparticle mediated therapies have
been introduced which can either enhance current diagnostic
methods like MRI9 and X-rays10 or introduce new methods,
such as photo acoustic tomography (PAT).11

Both the potential adverse health effects and the efficacy of
theranostics are directly related to the nanoparticle−cell
interactions and particle uptake from cells.12 There is a
plethora of published literature documenting the ability of
ENPs to penetrate biological barriers and initiate a cascade of
events, possibly leading to adverse health effects.13

It is also recognized that when nanoparticles enter
physiological media, there is an instant formation of a protein
coating, widely known as the protein corona.14 The protein
corona dictates to a great degree the behavior and the fate of
the nanoparticles in biological systems:15 it influences their
agglomeration potential,16 the nanoparticle adhesion to the cell

membrane,17 and potential cell-uptake and possible toxicity.18

Due to the importance of the corona in the nanoparticle−cell
interactions, many studies have focused on the identification of
(a) parameters influencing the adsorption of proteins on the
surface of nanoparticles in various physiological fluids19 and (b)
the role of the corona on the nanoparticle cell uptake.20

Although these studies aim to investigate the nanoparticle−cell
interactions, they do so indirectly by observing secondary
features such as the cell adhesion/viability, morphology,
metabolic activity, oxidative stress, and particle uptake, which
are later related to nanoparticle properties such as size, shape,
and surface chemistry/modifications.21 Among them, the most
commonly used metric is the quantification of particle
uptake.22,23

Currently the leading method for the nanoparticle uptake
quantification is the flow cytometry, which requires fluores-
cence ENPs.24 However, only a limited number of industry
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relevant ENPs possess intrinsic fluorescent properties and
possible ENP surface modification with fluorescent dyes may
alter the chemistry and affect the nanoparticle−cell inter-
actions.25 In an alternative approach, Wang et al. used the
plasmonic properties of gold nanoparticles to study the
intracellular localization of nanoparticles and recreate a three-
dimensional mapping of their distribution,26 which again is
limited to small number of ENPs with intrinsic particle
properties. Other researchers have used more conventional
methods like ICP-MS to quantify the nanoparticle uptake.27

James et al. used a very sophisticated method employing X-ray
fluorescence microscopy to map ZnO particles distribution in
THP-1 cells.28 Recently, there have been attempts to utilize
molecular dynamic simulations to investigate these interac-
tions.12 Although insightful, there are still inherent limitations
of this approach including the finite number of atoms that can
by added to the simulations and the inability to accurately
simulate an entire cell. In summary, although all these
aforementioned methods can provide some information on
nanoparticle−cell interactions, they have major drawbacks: (a)
they do not provide a direct quantification of the nanoparticle−
cell interactions; (b) they depend on intrinsic particle
properties (e.g., fluorescence, plasmonic resonance, etc.)
which limits their applicability to only a few particle systems;
and (c) they require highly specialized equipment.
It is evident that there is a lack of a methodology that is

independent of the particle properties, cell type, and media that
can directly measure the nanoparticle−cell interactions. We

recently developed a methodology that allows for the direct
measurement of nanoparticle−nanoparticle interactions using
atomic force microscopy (AFM).29 AFM is a state-of-the-art
surface sensitive technique that has the ability to characterize in
real time the interaction forces on a molecular level. While it
has been used extensively in material science for imaging30 and
atomic force measurements,31 only recently has the AFM been
employed for understanding the nanoparticle-to-nanoparticle
interactions in physiologic fluids.32 The high reproducibility of
the method in terms of preparation of ENP coated AFM tips
and atomic force measurements was showcased in our recently
published study by Pyrgiotakis et al.29 It was also shown in this
study that the agglomeration potential of CeO2 nanoparticles in
water was inversely proportional to their primary particle
diameter, but for Fe2O3 nanoparticles, that potential is
independent of primary particle diameter in these media. In
RPMI (Roswell Park Memorial Institute Medium no. 1640) +
10% Fetal Bovine Serum (FBS), the corona thickness and
dispersibility of the CeO2 is independent of PP diameter while,
for Fe2O3, the corona thickness and dispersibility were inversely
proportional to primary particle (PP) diameter.

Research Strategy. In this companion study, our recently
developed AFM platform was utilized to investigate nano-
particle−cell interactions in two relevant physiological media.29

To the best of our knowledge, this is one of the first systematic
studies to determine in real time the nanoparticle−cell
interactions and atomic force profiles and link them to
nanoparticle properties and biological media using AFM.

Figure 1. Illustration presenting the utilized research strategy. (a) Cell adhered to a substrate and a modified tip coming in contact with it. (b)
Process of approaching the cell. (c) Trace force curve. (d) Typical force curve during retrace with the various parameters highlighted.
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Figure 1a describes the overall research strategy. Industry
relevant ENPs of controlled size were synthesized in house
using the FSP based Harvard Versatile Engineering Nanoma-
terials Generation System (Harvard VENGES) system33−35 and
were attached on the surface AFM tips, as described in detail in
the Materials and Methods section.29 The interaction force
between the ENP functionalized tips and the cells was
measured. It is worth noting that FSP made ENPs are highly
relevant as they account for 90% by volume of ENPs currently
on the market.36 Typical examples of FSP made ENPs are,
among others, carbon black, pigmentary titania, and fumed
silica, as well as other novel metal and metal oxide ENPs
currently in use as catalysts, gas sensors, biomaterials, and even
nutritional products.37

Two ENP systems were used as test materials in the study,
CeO2 and Fe2O3. These ENPs were synthesized in two
different sizes, small (S) and large (L), and more specifically,
approximately 5 and 50 nm for CeO2 and 10 and 100 nm for
Fe2O3. Both ENPs are extensively used in many applications.
Cerium oxide is employed in many industrial and commercial
applications such as a catalyst,38 additive in fuels,39 oxygen
storage in fuel cells,40 pigment in cosmetics,41 and abrasive
medium in chemical mechanical polishing (CMP).42 Recent
toxicological evidence suggests that in the nanoparticle form
there might be adverse health effects35 and environmental
implications.43 Iron oxide is widely utilized as pigment44 and
has attracted considerable attention due to its promising
potential in biomedical applications for its superparamagnetic
properties11 and its use in nutritional45 applications. In addition
both ENPs have also been investigated in our recently
published nanoparticle−nanoparticle interactions AFM study.29

As test cells, the A549 cell line (lung epithelia cells) were
used. Epithelial cells constitute the first line of defense against
ENPs in the lung. RPMI 1640 (Roswell Park Memorial
Institute formulation 1640) and RPMI containing 10% Fetal
Bovine Serum (FBS) were used as biological media in the
study. The aforementioned media are commonly employed in
the preparation of nanoparticle suspensions in toxicological
studies13,16

During a typical AFM force measurement, the interaction
between the ENP modified tips and the cells is divided in two
subsequent modes, trace and retrace modes. “Trace mode” is
referred to the approach of the tip to the cell, while “retrace
mode” is referred to the retraction of the tip away of the cell.46

The atomic force is obtained as a function of the distance
between AFM tip and cell surface for both modes. Additionally,
the AFM allows the regulation of the contact time (dwell time)
of the tip with the cell surface (see Figure 1b for more details).
During the approach of the AFM tip toward the cell surface
(trace mode), the nanoparticle surface (with or without a
protein corona) and the various molecules of the cell
membrane (lipids, proteins, receptors etc.) will be compressed
as they come in contact. Further pressing the tip on the cell will
result in the tip indenting the cell and deforming the shape
(Figure 1b). This is an elastic deformation of the cell wall will
complete recover upon stopping the application of the force.47

At some point, the compression will stop, and the tip cantilever
will start bending, resulting in a force which is linearly
increasing with the distance from cell surface (Figure 1c).29

During the retrace, different force curve is observed as several
phenomena occur: (a) multiple small detachment forces shown
as a “see-saw” pattern in the atomic force curve and (b) a final
detachment force, which is distinctly larger than the small

detachment forces and indicates the complete detachment of
the tip from the cell surface (Figure 1d). The typical see-saw
pattern is characteristic of the multiple events of adhesive bonds
between the ENPs and the cell surface, breaking sequentially.48

During the retrace there are three important parameters that
define the ENP-cell interactions: (a) The average magnitude of
the force to break these individual bonds which is defined as
atomic force per bond (AFB); (b) the number of these breaking
bonds (number of bonds (NB); and (3) the detachment force
(DF) which is defined as the final larger single event force for
the complete detachment of the ENPs. These three
aforementioned parameters were used as metrics for the data
analysis in this study.

■ MATERIALS AND METHODS
The utilized AFM methodology has been fully described and
characterized in our previous publication.29 In brief, the ENP synthesis
and characterization, the AFM tip preparation, the cell substrate
preparation, and the force acquisition and analysis were performed as
follows:

Synthesis of ENPs. The nanoparticles were synthesized using
Harvard VENGES,33−35 which is based on flame spray pyrolysis
(FSP).49 The exact procedure is described in detail in our previous
publication.29 Flame aerosol technology accounts for more than 90%
of the total volume of all nanomaterials produced in the gas-phase
worldwide.50 Among the advantages of this method is its precise
control of the nanoparticle properties (i.e., composition, dimensions,
shape, etc.), the high yield (g/h), the ease of scaling, and the
reproducibility with regard to nanoparticle properties.37

In brief, during the FSP synthesis, a precursor solution, which
contains dissolved organometallic compounds in a high enthalpy
solvent, is pumped through a stainless-steel capillary tube at a
controlled flow rate. Oxygen flow disperses the liquid precursor
solution into fine droplets, which in turn are combusted by a small
pilot flame. This results in the full conversion of the liquid precursor’s
organic constituents into metal oxide nanoparticles. The nanoparticle
diameter is fully controlled by the operational parameters, and the
results are consistent and reproducible.49 The nanoparticles are
collected on a water-cooled glass fiber filter (Whatmann, 25.5 cm Ø)
for off-line characterization and further use.

ENP Dispersion Preparation. ENP dispersion was used for the
AFM tip modification as described in detail by Pyrgiotakis et al.29 The
ENP dispersions in deionized water (18.1 MΩ/cm) were prepared
according to the protocol developed by Cohen et al.,16 that includes
calibration of sonication equipment to ensure accurate application of
delivered sonication energy (DSE) in joules per millileter in order to
break agglomerates that might have formed.51 This method is
currently standardized and widely used for preparation of nano-
particles for toxicological studies.13,16,52 According to the protocol, in
order to achieve stable nanoparticle suspensions over time, the
delivered sonication energy (DSE) should exceed a critical value
(DSEcr). The DSEcr for various ENPs has been previously
experimentally determined, and the values varied from 161 to 242
J/mL.16 The required sonication was done with a Branson Sonifier S-
450A (Branson Ultrasonics, Danbury, CT, USA) fitted with a 3 in.
cup.

ENP Characterization. The ENPs were characterized by trans-
mission electron microscopy (TEM) regarding their morphology and
by X-ray diffraction (XRD) regarding their crystal structure and size.
BET N2-adsorption was used to measure their surface area and the
equivalent diameter. In more detail:

TEM. ENP dispersions were prepared as described before. After
sonication, the nanoparticle suspension was diluted down to 100 μg/
mL. TEM grids (Ted Pella Inc., Redding, CA) were submerged in the
solution and were let to dry. The particles were imaged with the Libra
120 (Carl, Zeiss Oberkochen, Germany).

XRD. The X-ray diffraction pattern was measured from 2θ 15−70°
with a Bruker AXS D8 Advance (Bruker, Karlsruhe, Germany). The
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analysis of the diffraction spectrum was done with the instrument
software (Topas 4 software, Bruker, Karlsruhe, Germany) using a
Rietveld method to determine the nanoparticle phase and crystalline
size.
Specific Surface Area. BET N2-adsorption of the nanoparticles

allowed for the determination of the specific surface area.
Approximately 100−200 mg of the nanoparticle was flushed with a
N2 gas at 150 °C for >1 h with the Flow Prep 060 (Micromeritics,
Norcross, GA). The specific surface area was measured with TriStar
(Micromeritics, Norcross, GA).
Cell Culture and Cell Substrate Preparation. For this set of

experiments, the A549 lung epithelia cells were used (ATCC; cell line
number CCL-185). They were selected due to the relevance to
nanoparticle respiratory exposures and their resilience to the AFM
conditions.
The growth media is made of 90% RPMI-1640 with L-glutamine

(from Cellgro; cat. no.: 25-053-CI) and 10% Fetal Bovine Serum (four
times filtered through 0.1 μm filter, from Hyclone; cat. no.:
SH30070.03). The cells were cultured and plated according to the
suggested ATCC protocols.53 For all the experiments the cells were
used between passages 5−10.
For these experiments, the cells were seeded on a on cover glass

bottom sterile culture dish (70674-02, Electron Microscopy Sciences,
Hatfield, PA) at approximately 5 × 104 cells by seeding 100 μL of cell
suspension to cover the glass bottom of the culture dish. The
substrates were placed in the incubator for 45 min, sufficient time for
the cells to attach on the glass bottom of the culture dish. Following
attachment the cells were washed and 1 mL of growth media was
added and the cells were incubated at 37 °C and 5% CO2 for a
minimum of 24h before conducting AFM measurements. Prior to the
usage of the AFM the media was removed, the cells were rinsed with
PBS (Phosphate Buffer Saline) and the appropriate media was added.
Modification of the AFM Tips. AFM Tip Selection. It is critical

for the AFM cantilever to yield before the tip punctures the cell. In
order to ensure that, the AFM tips with small spring constants should
be used (0.1 N/m). The tip type was optimized by trial and error.
Several types of tips were tried, and the tip producing consistent and
reproducible results was selected. It is worth noting that long
cantilevers, although have small spring constant, which is appropriate
for this study, are hard to functionalize as they are very wobbly. The
selected tip was the BioLever Mini (Olympus BL-AC40TS, Asylum
Research, Santa Clara, CA).
Attachment of ENPs on AFM Tips. The ENPs were ex situ attached

on the tips from aqueous suspensions according to the method
developed by Pyrgiotakis et al.29,54

The ENPs were attached on the AFM cantilever tips (BL-AC40TS)
with a fine coordination of Leica micromanipulators (Micro-

manipulator L, Leica Microsystems, Buffalo Grove, IL) under an up-
right microscope (Leica DMIRB, Leica Microsystems, Buffalo Grove,
IL) with a 20× magnification lens. The AFM cantilever tip was
brought into the vicinity of a flint glass capillary tube (VWR, Radnor,
PA) previously filled with the desired nanoparticle aqueous dispersion.
A small dispersion droplet was ejected from the capillary and carefully
allowed to circulate the first 5 mm of the outside cylindrical surface of
the capillary tip for about 2 min in order to evenly wet the capillary
front. The tip was then slowly brought into contact with the remaining
dispersion for 15−30 touch intervals. Subsequently, the AFM tips were
allowed to dry at ambient room condition, and then they were rinsed
with deionized water. Figure 2 summarizes this procedure. It is very
crucial to fully coat the tip to ensure that only particles and not “bare”
sides of the AFM tip come in contact with the cell surface. This was
verified with SEM imaging of the tips after the nanoparticle
attachment.

Force Measurements Using AFM. AFM Preparation and Setup.
All the measurements were conducted with the Asylum MFP-3D AFM
System (Asylum Research, Santa Barbara, CA) sitting on a TS-150
vibration isolation table (Asylum Research, Santa Barbara, CA) and
enclosed in AEK 2002 acoustic isolation enclosure (Asylum Research,
Santa Barbara, CA). The AFM was positioned on top of an inverted
Olympus IX81 optical microscope. A photograph of the experimental
setup highlighting the various components is supplied in Figure S1
(Supporting Information).

The cell substrate was fixed with two glass slides (one in each side)
with Crystalbond 509 adhesive (Ted Pella Inc., Redding, CA) in order
to allow room for the microscope lens. No additional instruments were
required for the liquid measurements as they were executed by
forming a liquid meniscus between the AFM tip holder and the
substrate (Figure 1a). The force curves were obtained in two different
environments: RPMI and RPMI+10% FBS. For all the cases, the cell
substrate and the AFM tips were left in the utilized media for 30 min
prior to use. This ensures that the system reaches equilibrium and
sufficient time is given for the protein corona to be formed on the
nanoparticle surface.

For each experiment, a different nanoparticle functionalized tip and
a different cell substrate was used. The cell substrate was used for a
maximum of 2 h, which is proven not to affect the cell function.55,56

AFM Tip Spring Constant Measurement. The spring constant and
the resonance frequency of the AFM tips were measured before and
after the nanoparticles attachment to account for the added mass of
the particles and the corresponding change to the resonance
frequency. It was experimentally determined in air over a clean glass
surface according to the standardized protocol developed by Torii et
al.57

Figure 2. Method for tip preparations. (a) The tips are coated with the creation of a fine droplet on the edge of a fine capillary. (b) The tip is
brought in contact with the created droplet and is dunked several times. (c) A micro sized droplet is formed at the edge of the tip. (d) The droplet is
left to dry to create a small particle aggregate. (e) A photograph that depicts the process with the key elements illustrated.
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Force Measurement Protocol. For each nanoparticle−cell inter-
action, two to five sets of tips and cells were used. For each
measurement session, 10−30 randomly selected cells (including cells
in a monolayer and isolated cells) were investigated during each
session. The cantilever tip was aligned on various locations over the
cells by using the built-in inverted microscope. For each cell, one to
five consecutive extension/retraction movements were conducted per
cell at a speed of 100 nm/s. For multiple measurements per cell,
different touchdown locations were selected. The forces acting
between the cell and the modified tip were measured by bring the
tip into contact at 1 nN. This ensures that for all experiments the tip
will push the cell surface down (indentation) for approximately 400
nm. The smaller the size of the particles attached on the AFM tip, the
more particles might come in contact with cell membrane.
Unfortunately, it is currently not possible to control and measure
the number of particles coming in contact with the cell surface.
Instead, the depth of the indentation was kept constant at
approximately 400 nm for all experiments, regardless of the size of
the particles.
Preliminary data showed that the 1 nN does not impact the cell.

Our data show that an unfunctionalized tip could puncture the cells for
forces greater than 20 nN.
The tip was left in contact (dwell time) for either 30 or 180 s while

the feedback maintained a constant force of 1 nN between tip and cell.
Force Measurement Analysis. The AFM measures the force as a

function of the tip displacement and not directly as a function of the
surface tip distance. Instead each curve was individually analyzed and
the values of DF, NB, and AFB were derived. In total approximately
150−200 force curves were analyzed for each case.
Statistics. Once the curves were analyzed regarding the NB, DF,

and FPB parameters, the values of each parameter were averaged, and
the average values were used with standard deviation shown as the
error bar. The comparison between values was based on ANOVA and
the p-value calculated with Prism by GraphPad. ANOVA was
preformed in pairs of the examined values. A Bonferroni test was
used to estimate the confidence intervals and significance. Comparison
between two parameters that resulted in p-value < 0.05 was considered
statistically significant.

■ RESULTS AND DISCUSSION

Particle Synthesis and Characterization. These partic-
ular ENPs have been already rigorously characterized in our
previous publication.29 The CeO2 and Fe2O3 nanoparticles

were synthesized in two distinctly different primary diameters
of 5−10 and 50−100 nm. Figure 3 shows collectively the
structural characterization of CeO2 (Figure 3a) and Fe2O3
(Figure 3b) nanoparticles for both diameters. Figure 3c−f
shows the TEM images of the same particles. Table S2
(Supporting Information) summarizes the results of the particle
characterization including the diameter based on the XRD
patterns (Rietveld analysis) and the Brunauer−Emmett−Teller
(BET) N2 adsorption specific surface area.
As it is evident from the XRD patterns, both CeO2 and

Fe2O3 are crystalline. More specifically, the CeO2 nanoparticles
have the characteristic cubic (CaF2 structural type), in
agreement with literature,49 and the Fe2O3 nanoparticles are
in gamma phase, also in agreement with FSP literature.58 In
addition, the TEM showcase the characteristic hexagonal form
of the Fe2O3 particles59 and the rhombohedral shape of the
CeO2 particles.

49 The desired diameter variation is confirmed
by both the XRD patterns and TEM images (Table S2,
Supporting Information). It is worth noting that there is a
nearly self-preserving diameter, as it is true for all flame
generated materials.36

The DLS characterization was extensively described in our
previous publication29 and showed that all particles suspensions
follow unimodal particle distributions, fairly monodispersed
with the PDIs ranging from 0.261 to 0.674 in both media,
which is in accordance with previous publications.13,16,60

AFM Tip Preparation and Characterization. Figure 4a−
d shows an SEM image of the AFM tips modified with the
CeO2(L), CeO2(S), Fe2O3(L), and Fe2O3(S) nanoparticles,
respectively. In both cases, it is evident that the tips are coated
with the nanoparticles with a single nanoparticle protruding. In
our previous publication, we examined the stability of the tips
by successively imaging them with SEM after 200 measure-
ments in air, 200 measurements water, 200 measurements
RPMI, and 200 measurements RPMI+10% FBS.29 Examination
of the tips before and after each measurement in this study also
showed that the nanoparticles remain in place after each
measurement. Overall, our current data showed that the utilized
method results in nanoparticles very well adhered on AFM
tips.29

Figure 3. Structural characterization of the utilized nanoparticle system. XRD patterns for the (a) CeO2 and Fe2O3 nanoparticles. TEM images of the
(c) Fe2O3(S), (d) Fe2O3(L), (e) CeO2(S), and (f) CeO2(L).
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Atomic Force Profiles: Nanoparticle−Cell Interactions.
Supporting Information Figure S2 shows a typical force curve
during the cell approach (trace mode) and cell retraction
(retrace mode). The three important parameters/metrics that
define the ENP−cell interactions, namely, the detachment force
(DF), the atomic force per bond (AFB), and the number of
bonds (NB) are illustrated in the figure as well. The number of
bonds usually follows a normal distribution as shown in Figure
S2b.
The results of this analysis are summarized in Figure 5 for

both RPMI+10% FBS and RPMI media for a 30 s dwell time.
Figure 5a, b, and c show the DF, NB, and AFB metrics,
respectively, for both the CeO2 and Fe2O3. Figure 5d−f shows
the same parameters for the 180 s dwell time. The related p-
values are listed in Supporting Information Tables S3−S10.
Role of Biological Media. DF appears to be greater for the

case of pure RPMI compared to RPMI+10%FBS regardless of
the material or the size of the nanoparticles, with only
exception to the observation the small CeO2, where the p-value
is not showing statistical significant difference (Figure 5a). In
the case of the 30 s dwell time, the DF values are significantly
greater as compared to the RPMI+10%FBS for all the cases
with the exception of the small CeO2 nanoparticles, where the
difference is not significant due to the relative large statistical
error. These observations indicate that the cells have a stronger
affinity to the nanoparticles in the absence of serum proteins
(no protein corona). These results are in good agreement with
the literature. It was shown in previous published studies that
protein corona plays a significant role on the cellular uptake of
ENPs.18 Tedja et al. showed that the serum proteins result in
reduced titania nanoparticle uptake.61 Similarly, Johnstone et al.
showed that the surface associated serum proteins inhibit the
particle uptake of various polymer nanoparticles.62

Moreover, the number of bonds forming between the
nanoparticles and the cell surface (Figure 5b) is also
significantly greater for the case of pure RPMI, as compared
to the nanoparticles in RPMI+10% FBS, with exception of the
case of the small Fe2O3 nanoparticles that the observed
difference is within the experimental error. (See related p-values
in Supporting Information Table S10). This is in agreement
that with our previous hypothesis, stating that the nanoparticles
in the absence of serum have higher affinity toward the cells.
The nanoparticle surface without the protein corona has more

binding sites available from the various constituents of the cell
to attach, and therefore the number of bonds is significantly
higher.61 The larger particles have higher surface area per
particle. They offer more binding sites, which may result to
greater DF values.
The corona formation and characteristics are particle/media

dependent and play an important role in nanoparticle cell
uptake and biointeractions in general.13,16 In the future, we plan
to expand the investigation and characterize the protein
coronas on the nanoparticle systems used here in order to
better understand the link between corona characteristics and
AFM measured interactions.

Role of ENP Size. It is also interesting to examine the effect
of the ENP size on the magnitude of the detachment force
(DF). For the CeO2 nanoparticles in RPMI media, the
nanoparticle size has a significant effect on DF value, while in
the case of RPMI+10% FBS, the nanoparticles size does not
have a significant effect. However, for the of the Fe2O3
nanoparticles, the smaller size results in larger DF, but the
difference is not as strong as for the case of the CeO2
nanoparticles. This differences observed in the material
dependency might be explained by the differences previously
observed in corona properties.29 As shown in our previously
published companion AFM study on nanoparticle−nano-
particle interactions,29 the repulsive layer thickness (RLT, an
estimate of the protein corona thickness) of the Fe2O3
nanoparticles decreased with the size, a clear indication that
the corona properties were size dependent. These findings
reflect differences on the size of the corona and do not
necessarily reflect differences in corona composition. It is well
documented that the corona composition depends both on the
particle size and surface properties.63

In the case of the pure RPMI and the absence of protein
corona, the adhesion of both CeO2 and Fe2O3 nanoparticles to
cells show stronger dependence on the particle size as indicated
by the DF. More specifically, the larger CeO2 nanoparticles
have an approximate 2-fold DF compared to the smaller CeO2
nanoparticles. Similar findings were found for the Fe2O3
nanoparticles although the size dependency was found to be
less prominent.
Finally, in the case of RPMI, the NB was found to depend on

the particle size (Figure 5b and e). Generally larger nano-
particles displayed a higher NB value. Larger nanoparticles offer
more absolute surface per single particle and therefore more
binding sites.64 It is worth noting that, in RPMI, there was no
significant difference observed.

Role of Dwell Time. Figure 5d, e, and f shows the same
parameters (DF, NB, AFB, respectively), for the case of the
larger contact time (180 s). The calculated p-values are
summarized in Supporting Information Table S6. The general
trends observed for the DF in the case of 30 s dwell time seem
to remain the same for this case. The CeO2 nanoparticles have
stronger DF values as compared to the Fe2O3 ones regardless of
the media. It should also be noted that the various differences
between RPMI and RPMI+10% FBS seem to have been
reduced for the longer dwell time. It is also evident that for the
CeO2 nanoparticles the longer dwell time results in stronger
DF as compared to the case of 30 s, while the opposite is
observed for the Fe2O3.
The direct comparison of the DF parameter for the dwell

times of 30 and 180 s shows that in pure RPMI the DF at 180 s
appears to be greater compared to the 30 s for the CeO2
nanoparticles. The Fe2O3 nanoparticles follow the opposite

Figure 4. Characteristic images of the modified AFM tips with (a)
CeO2(L), (b) CeO2(S), (c) Fe2O3(L), and (d) Fe2O3(S).
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trend with DF value to be either small or not changing between
the dwell times (p-values are summarized in Supporting
Information Table S9).
For the case of RPMI+10% FBS and 180 s dwell time, DF

values are consistently greater as compared to the 30 s dwell
time regardless of the material type and size. These
observations are in agreement with other published studies
indicating the dependency on interaction time of the protein
adsorption on the nanoparticle surface.65,66 Similarly, these
findings are also in agreement with computer simulations
studying the nanoparticle cell interactions.67 It was previously

shown that longer dwell time (time scale of minutes) brings the
adsorption dynamics closer to equilibrium. Here this is causing
the difference in DF between the RPMI and the RPMI+10%
FBS to be reduced.68

Moreover, similar trends are observed for the NB parameter.
More specifically, the small CeO2 nanoparticles have a
significant higher NB while the small Fe2O3 nanoparticles do
not show significant differences between the two dwell times.
For the large Fe2O3 in RPMI, the NB value is reduced by 50%
while for the small Fe2O3 it remains unchanged (see p-values in
Supporting Information Table S10). It is worth noting that the

Figure 5. Various metrics of the nanoparticle−cell interactions in RPMI and RPMI+10% FBS for 30 s dwell times: (a) detachment force, (b)
number of bonds, and (c) atomic force per bond. The symbol * indicate p < 0.05. The various metrics of the nanoparticle−cell interactions in RPMI
and RPMI+10%FBS for 180 s dwell times: (d) detachment force, (e) number of bonds, and (f) atomic force per bond. The symbols * indicate p <
0.05.
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trends are consistent with the observations regarding the DF In
addition, the differences in terms of NB values between the
RPMI and RPMI+10% FBS seem to decrease for the longer
dwell time. Again, this might be explained on the basis of the
equilibrium of the protein adsorption that is achieved at longer
dwell times.68

Atomic Force Bond (AFB). The magnitude of the AFB was
found to be independent of media, dwell time, size of ENP, and
the material. More specifically, AFB in RPMI does not show
any dependency with either the size or the material (Figure 5c
and f). This is in agreement with literature describing
interactions of various organic molecules with various
substrates (fibrinogen on gold and mica surface).69 Similarly,
in the case of the RPMI+10% FBS, there is no significant
difference of the AFB values either as a function of the
nanoparticle size or the material. Further there is no statistically
significant difference between the AFB in RPMI and the AFP in
RPMI+10% FBS. The magnitude of these forces are in
agreement with similar studies by Ikai et al. describing the
interaction of protein (conA protein) and bacteria (yeast cells
Saccharomyces cerevisiae).48

Overall Nanoparticle Affinity to the Cells. Evaluating the
results collectively, it is clear that both ENPs used in this study
have an affinity toward the A549 cells. In the case of the in
RPMI, the adhesion is governed by the size with the larger
nanoparticles exhibiting higher affinity. In the case of the RPMI
+10% FBS the adhesion is mainly governed by the material
with the CeO2 to exhibit larger DF, regardless of the size and
the dwell time. Although quantification of the nanoparticle
uptake is out of the scope of this manuscript, in numerous
previously published studies, it has been demonstrate that A549
can uptake both CeO2 and Fe2O3 nanoparticles. Gass et al.
showed that the Fe2O3 nanoparticles can be taken up by A549
cells and can lead to potential adverse effects.70 Furthermore,
Fe2O3 nanoparticles were shown to be uptaken by alveolar cells
during inhalation and can cause adverse health effects. Sotiriou
et al. also demonstrated with animal inhalation studies that
Fe2O3 nanoparticles can cross the air−blood barrier and can
cause oxidative stress in the lung and the heart of the exposed
animals.34 Similarly, the CeO2 nanoparticles were found to be
taken up by cells in in vitro35,70 and in vivo studies.35 This has
been documented by Demokritou at al. where it was shown
that CeO2 ENPs were taken up by lung epithelia cells after
animal inhalation exposures.35 These type of interactions
depend on the particle properties, cells, and the media, and
therefore, trends observed here cannot be generalized or even
extrapolated to other cell types or particles. Further research is
required to be able to derive more generalized conclusions.

■ CONCLUSIONS

This study is one of the first attempts to assess in a systematic
manner the role of the protein corona to the nanoparticle−cell
interactions in relevant physiological media using atomic force
microscopy. The AFM platform enables a real time direct
measurement of the ENP−cell interactions. Results from this
study highlight the important role of protein corona in the
particle−cell interactions as indicated by the higher nano-
particle−cell interaction force in the case of the presence of
serum proteins in the biological media. This AFM approach
provides an additional layer of information on atomic force
interactions, which can be valuable in the quest of under-
standing the complex nanobio interactions.

In the future, we plan to use the developed AFM platform to
investigate the forces between nanoparticles and various cell
lines under conditions where certain nanoparticle internal-
ization mechanisms have been blocked. This will allow the
investigation of the specific role of the nanoparticle properties
in the internalization mechanisms.
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